教育関連情報

学部生対象のコース、授業

学部生向け授業

数理・データサイエンス標準カリキュラムコース

標準カリキュラムコース

神戸大学では、データサイエンスの基礎を身につけることができる数理・データサイエンス標準カリキュラムコースを開設しています。2018年度以降の入学生で対象学部に所属している学生は、数理科目・統計科目・情報科目・データサイエンス科目のそれぞれで所定の単位数以上を修得し、かつ全体で14単位以上を修得することで、数理・データサイエンス標準カリキュラムコース修了認定証が授与されます。これらの科目は主に1~2年次生の科目からなっています。

学部生向けの授業

科目名 履修時期 単位数 内容
「志」講義 1年前期 社会や研究の第一線で活躍をされている方々によるオムニパス形式の講義
データサイエンス入門(A・B) 1年後期 データとは何か、データを活用するとはどういうことなのかなど、データサイエンスの入門を学ぶ
データサイエンス基礎演習(A・B) 1,2年後期 各自のPCを用いて、Excelの使い方に習熟するとともに、データ解析の基礎を講義・演習を通して学ぶ
データサイエンス概論(A・B) 2年前期 データサイエンスを実践する際に必要となる様々な技術の概要および理論の基礎を学ぶ
データサイエンスPBL演習 2年後期 データサイエンスコンテストを模したPBL(Project Based Learning) 実習を通して、Pythonを用いたデータの取り扱い方、分類問題・回帰問題に対する手法を実践的に学ぶ
オープンイノベーションワークショップ(理学) 3,4年前期 経営者の視点やプロジェクトマネージャの視点での実践的なPBL(Project Based Learning) を通じて、ITや金融に対する多面的な視点、チームワーキング、ビジネスレベルのアウトプットについて学ぶ
オープンイノベーションワークショップ(工学) 3,4年後期 アルゴリズム・データ構造、サイバーセキュリテイ、情報通信ネットワーク、 人工知能などの情報システム工学の基礎技術が、実際の金融ビジネスの中でどのように活用されており、 深い関係を持っているかをグループワークによるPBL(Project Based Learning) を通して学ぶ

神戸データサイエンス操練所

神戸データサイエンス操練所

神戸データサイエンス操練所は、「尖ったデータサイエンティスト」を育成するために組織された研究チームです。データサイエンスに関する基礎理論をしっかり学び、本物の社会課題に紐づいた本物のデータを使った真剣勝負で「本物の実力」を見つけることを目的としています。データサイエンス・人工知能(AI)に関して志を高くもつ人であれば、年齢や学問分野は不問です。数学に苦手意識がないことと、Pythonを使えることが必須ですが、今でなくても、近い将来、苦手意識を克服し、Pythonも使えるようになると決意する人も対象です。募集については、facebookや数理・データサイエンスセンターのニュース欄でお知らせいたします。


大学院生向けの授業、育成プログラム

科目名 履修時期 単位数 内容
データサイエンス特論(1・2) 特別講義 データサイエンス特論1では、データサイエンスの基礎である人工知能・機械学習の技術的側面について学び、 データサイエンス特論2では、人工知能技術のユーザ側の企業と、技術提供企業(シーズ側企業)の事例報告を基に、データサイエンスの実質的応用について課題解決型ワークショップを行う。
実践データ科学演習(A・B) 集中講義 兵庫県や神戸市等の地方自治体から、実際の課題と関連する可能性のあるデータの提供を受け、データ解析・分析による課題の設定と解決を目指したグループワークによるPBL(Project Based Learning)を行う。
データサイエンスコンテスト型PBL実習 集中講義 データサイエンスコンテストを模したPBL(Project Based Learning) 実習を通して、Pythonを用いたデータの取り扱い方、分類問題・回帰問題に対する手法を実践的に学ぶ
オープンイノベーションワークショップ(理学) 集中講義 経営者の視点やプロジェクトマネージャの視点での実践的なPBL(Project Based Learning) を通じて、ITや金融に対する多面的な視点、チームワーキング、ビジネスレベルのアウトプットについて学ぶ
オープンイノベーションワークショップ(工学) 集中講義 アルゴリズム・データ構造、サイバーセキュリテイ、情報通信ネットワーク、 人工知能などの情報システム工学の基礎技術が、実際の金融ビジネスの中でどのように活用されており、 深い関係を持っているかをグループワークによるPBL(Project Based Learning) を通して学ぶ

大学院生向けプログラム

プログラム名 対象 内容
データ関連人材育成プログラム(DuEX) 修士・博士 データ関連人材育成関西地区コンソーシアム(代表機関:大阪大学)のもとで、データサイエンス等のスキルを習得させる研修プログラムの提供やキャリア開発支援を行います。高度データ関連人材を育成し、社会の多様な場での活躍を促進することを目的としています。
独り立ちデータサイエンティスト人材育成プログラム(DS4) 修士のみ 文部科学省の未来価値創造人材育成プログラム「超スマート社会の実現に向けたデータサイエンティスト育成事業」(代表機関:大阪大学)の取り組みとして実施され、即戦力となるデータサイエンティストを養成することを目指しています。